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The degeneration of the lattice turbulence in two-phase flows and the behavior of 
the spectrum in the space of wave numbers are analyzed on the basis of a numerical 
solution of the dynamic equation for the spectral function of turbulence energy. 

Interest in the investigation of two-phase flows, exemplified by suspension of solids 
in gas and by dilute suspensions, is attributed to their wide application in metallurgy, 
energetics, chemical technology, and rocket engineering. In a number of practical problems 
it is required to know the distribution of the energy density of turbulence over wave num- 
bers and the effect of dispersion agents on it. In the present work an investigation of the 
effect of particles on the energy spectrum of the carrying agent in the initial period of 
degeneration is conducted. The case of isotropic turbulence is considered. 

It is assumed that the size of particles is less than the internal scale of turbulence 
and that the volume density of particles ~ << i. The problem of the influence of particles 

suspended in a liquid on the final period of degeneration of isotropic turbulence and the 
distortions of the energy spectrum are considered in [i, 2], were equations of the Karman- 
Howarth type for a liquid [3] and the equation for the spectral function of the turbulence 
energy are obtained neglecting the transport function W. 

According to [I] the dynamic equation for the three-dimensional spectral function E of 
the energy of turbulence can be written in the form 

0 k k 
E (k; t) d k  = W - -  2vo [ k2E (k; t) dk  - -  e ' ,  ( 1 ) 
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where ~' is the additional dissipation of energy due to noncoincidence of fluctuating veloc- 
ities of the liquid and particles. 

In order to determine the transport function we make use of the Heisenberg hypothesis 
[3], which states that the energy transport along the spectrum of wave numbers occurs as if 
there existed a certain turbulence visosity VT(k; t): 

h 

W = --2% (k; t) I kzE  (k; t) dk.  ( 2 )  

An i n v e s t i g a t i o n  o f  i s o t r o p i c  t u r b u l e n c e  based  on t h e  H e i s e n b e r g  h y p o t h e s i s  i s  c o n d u c t e d  
in  [ 4 - 6 ]  and a d e t a i l e d  r e v i e w  i s  g i v e n  in  [ 3 ] .  For  t h e  l i q u i d  (B = 0 ) ,  homogeneous  w i t h  r e s -  
p e c t  t o  VT(k; t ) ,  t h e r e  a r e  d i f f e r e n t  d e p e n d e n c e s  in  t h e  l i t e r a t u r e  c o n s t r u c t e d  f rom i n t u i t i v e  
c o n s i d e r a t i o n s  ( s e e ,  f o r  example ,  [ 3 ] ) .  

In  [ 7 ] ,  a model  o f  t u r b u l e n t  mo t io n  l e a d i n g  t o  a c o m p l e t e l y  d e t e r m i n e d  f u n c t i o n a l  depend-  
ence  o f  t h e  t u r b u l e n c e  v i s c o s i t y  on t h e  s p e c t r a l  f u n c t i o n  i s  p r o p o s e d ,  and c o r r e c t i o n s  t o  t h e  
spectral tensor of fluctuations and the turbulence viscosity due to the presence of suspended 
particles are calcualted. Taking account of [7], W and E' are of the form 

h 

v = - 2  (vT + ~*) f k~E (k; t) 0k, (3 )  
0 

e' 2~ ( 1 - -  • p/v T (k) (h ( 4 ) ~- , " k2E(k ;  t) dk .  
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Fig. i. One-dimensional spectrum (a) and two-point correlation func- 
tion (b) at different distances from the lattice (Re = 5300; curves, 
calculation; points, experiment): i) x/M = 30; 2) 40; 3) 60; 4) 80. 

Fig. 2. Variation of the one-dimensional spectral function with 
weighted concentration of particles for x/M = 60: i) p = 0; 2) 0.i; 
3)  0.5; 4) i. 

The value 9T is the turbulence viscosity in a pure liquid: 

[ ~ 4 ie(k; t) dk]~/2 , 
~:~ (k; t) = - -Vo  + ~o + T ~ k 2 . 

(5) 

and the correction to the turbulence viscosity due to the presence of particles is of the 
form 

~;*,.~---- ~ o ~ _  ~ ~E(k) dk, 
3 • , ~ % k  2 (6) 

(k). 

When the molecular viscosity is neglected, Eq. (5) changes to one of the dependences ob- 
tained by Stewart and Townsend [3] from dimensional considerations. 

In order to find the value of the constant = in (5) and (6) the dynamics of degeneration 
of the lattice turbulence for ~ = 0 was calculated for experimental conditions [8]. 

As the initial condition E(k; t = 0) for Eq. (i) in the region k ~ k d the following func- 
tion was taken [6]: 

B ' (7) 

which resulted in the dependence E ~ k 4 in the region of small k and in the equilibrium re- 
gion E ~ k -s/3. In the region of large wave numbers, the following approximation was taken 
[3]: 

= . k j - 5 / 3  k 2 
(8) 

In order to determine the coefficients in (7) and (8), we used the conditions of continuity 
of E and 8E/Sk for k = k d and the relations 
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Fig. 3. Normalized three-dimensional spectral functions at 
a point x/M = 60 for different weighted concentrations of 
particles: i) p = 0; 2) 0.I; 3) 0.5; 4) i. 

Fig. 4. Distortion of the energy spectrum of the carrier 
phase after adding particles into the flow; i) x/M = 40; 2) 
60; 3) 80; a) p = i; b) O. 

iE(k;  O) dk = 3 i 2 <u ' '> ;  e=2vo k2E(k; O) dk, 
0 0 

in which <u'2> and e were taken from the experimental data [8] for the distance from the lat- 
tice x/M = 30. In numerical calculations the intervals in time and in the wave space were 
taken in accordance with the recommendations of [6]. 

The one-dimensional spectral function E I (kl; t) and the function of two-point correla- 
tion f(r) were calculated from the formulas 

1 ~ E(k; t )  14- dk, 
E~ (k~; t) = - ~ -  , k k~ ) 

f ( r ) = 2 i [  coskr(kr) z + sinkr ]E(k; t ) ( k r )  ~ dk. 

A comparison of the calculated and experimental results [8] is shown in Fig. i. Such 
agreement of the calculation and experiment was obtained for ~ = 0.45, which is in good 
agreement with the data [5, 6]. 

For the case of an inhomogeneous flow with particles, a situation in which uniformly 
concentrated particles were injected in the flow of liquid with the developed turbulence 
(x/M = 30 for the conditions of the experiments [8]) was modeled, and the influence of 
particles on the degeneration of the lattice trubulence was elucidated. 

Unfortunately, the authors did not succeed in finding experimental results on degenera- 
tion of the isotropic turbulence for two-phase flows in the literature; in connection with 
this, a qualitative analysis was conducted on the basis of Eqs. (I), (3)-(6). 

Calculations have shown that the degeneration of the kinetic energy during the initial 
period follows a linear law 

< u '~ > = const t -C1+~, (9) 

where p = p/K is a weighted concentration of particles. 

Figure 2 shows one-dimensional spectra E I for x/M = 60, and Fig. 3 shows three-dimen- 
sional functions of the energy spectrum normalized over the corresponding values <D,2> and X 
for different weighted concentrations of particles. From these results it follows that the 
energy in the region of dissipation decreases when particles are added in the gas flow. A 
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Fig. 5. Shift of the starting point of 
self-similar behavior of spectra as a 
function of the weight concentration of 
particles. 

similar qualitative picture was observed in experiments [9, i0] on the axis of a two-phase 

jet. 

An investigation of the variation of the Kolmogorov scale q ~ I/k d for different weighted 
concentrations has shown that as p increases the region of dissipation shifts toward small 
wave numbers and the interval E ~ k -5/s in the wave space decreases. A similar picture is 
discussed in [9]. The ratio of q(p) to N(P = 0) is described for small D by an approximate 
dependence q(p)/q(p = 0) = 1.0 + 2.15 p. 

According to calculations, when considering self-similarity of one-dimensional spectra 
in the parameter (ev~) 1/4, one can observe a shift of the value (kq)* (the value starting 
from which spectra can be treated as self-similar) toward an increase of wave numbers. This 
is shown in Fig. 4. For the case of a homogeneous flow, the calculated one-dimensional spec- 
tra and experimental spectra [8] are self-similar not only in the region of universal equili- 
brium but also in the region of energy-containing eddies. 

When particles are added into the flow, self-similarity is observed only in the region 
of viscous dissipation. The ratio of (kq)*in a two-phase flow to analogous value (kq) 0 for a 
pure liquid is shown as a function of the weight concentration of particles in Fig. 5. 

In conlcusion we note that an estimate BE(k; t)/Bt and dependence (9) indicate an addi- 
tional damping not only in the final period of degeneration [i, 2], but also at the initial 
stage with additional damping ~t-P. 

NOTATION 

~, internal turbulence scale; 6, volumetric concentration of particles; E, function of 
a three-dimensional energy spectrum; t, time; k, wave number; ~0, kinematic coefficient of 
molecular viscosity; • ; pp, density of material of particles; pf, liquid density; 
~=(v3/8)~/4, Kolmogorov scale; u', pulsation velocity of the liquid; M, parameter of the tur- 
bulence-producing lattice; x, distance downward from the lattice along the flow;p, weight 
concentration of particles; e, dissipation energy. 
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